NIR Detectors

Michael Schubnell University of Michigan

November 20th 2009

BigBOSS Collaboration Meeting

LBL

HYBRID (NIR) IMAGING SENSORS

NIR: HgCdTe detector layer w/ tailored wavelength cut-off

Operation & performance

- No charge transfer (every pixel has its own MOSFET)
- Fast multiplexed (selective) read-out
- Dark current higher than CCDs (strong function of temp., cut-off)
- Read noise higher than CCDs (≤25 e / cDs for 1.7µm; ≤10 e / cDs for 1.7µm)
- Multiple non-destructive sampling possible $\rightarrow \sqrt{N}$ read noise
- Interpixel capacitance deterministic coupling
- Persistence short term memory of prior exposure(s)
- Flux dependent gain (?)

SIDECAR ASIC: digitizing & control integrated in single chip

- will be used for JWST
- installed during HST service mission 4 to read ACS CCD
- cryo or warm operation possible
- Sidecar module + EGSE developed for SNAP/JDEM

First Image of the Repaired Advanced Camera for Surveys

Barred Spiral Galaxy NGC 6217

Photographed on June 13 and July 8 2009

Extensive NIR effort for SNAP/JDEM

- comprehensive detector development program
- detailed characterization w/ goal of understanding detector properties

QE (absolute and spacial)
Read-noise (total incl. dark current)
Interpixel capacitance - conversion gain
Pixel response uniformity
Linearity (fluence dependent gain)
Reciprocity failure (flux dependent gain)

Quantum Efficiency

H2-236 QE (FILTER)

QE can be very uniform

Dark Current

nominal SNAP temp.

low dark current requires cooling

Read Noise

SNAP 1.7 micron detectors

typical
CDS read noise
~25 e

Read noise reduction through multiple sampling

Fowler-N sampling:

Dark current limits \sqrt{N} read-noise floor

2.5 micron material shows superior read-noise performance

2.2 e for Fowler-32

Lower read noise can be achieved by increasing cutoff wavelength BUT

- for long exposures dark current becomes problematic
- higher cut-off wavelength requires significant lower temperature (to keep DC low)

Inter-pixel capacitance

capacitively couples the signal in a pixel to its four nearest-neighbor pixels.

Efforts under way to reduce IPC For Teledyne ... alpha=1.5

Conversion Gain Measurement

Gain is measured with 3 techniques

variance estimator accounts for IPC

$$\widehat{\sigma_{D}^{2}} = \frac{1}{2N} \left[\sum_{i,j} D^{2} [i,j] + 2 \sum_{i,j} D[i,j] D[i+1,j] + 2 \sum_{i,j} D[i,j] D[i,j+1] \right]$$

traditional variance estimator

$$\widehat{2\sigma_{N}^{2}} = \widehat{\overline{D^{2}}} = \frac{\sum\limits_{i,j} D^{2}\left[i,j\right]}{N}$$

standard gain measurement (Gaussian fit)

Ignoring correlated noise overestimates the gain by ~ 20%. (for this device)

Agreement between **Gaussian** and **standard variance** methods confirms that outliers have been properly masked.

INTRA-PIXEL RESPONSE

lateral charge diffusion (random, prior to charge collection)

capacitive coupling (deterministically moves charge after collection)

fitted pixel parameters:

charge diffusion: I.7 \pm .02 μ m capacitive coupling: 2.4 \pm .1% (from correlated noise: 2.2 \pm .1%)

PIXEL LEVEL RESPONSE

SPOT'S'-O-MATIC

Simultaneously scan array of (400×400) spots to rapidly characterize the sub-pixel response of an entire detector

Simulated Spots-o-Matic signal obtained by convolving Spot-o-Matic Scan with 6µm PSF

Persistence

"ghost" of previous exposure in the current exposure.

Slit open

First 2 minute dark exposure

Persistence

similar decay shape for different fluence and exposure time

Can obtain 'persistence curve' (for fixed exposure time)

Mitigation of Persistence

(measurement by Gert Finger following persistence model by Roger Smith)

- •First 2 minute dark exposure without global reset de-trapping
- •First 2 minute dark exposure with global reset de-trapping

factor 9 improvement

Slit open

Reciprocity Failure

(bright source - short integration time does not give the same signal as dim source - longer integration time)

 NICMOS arrays (2.5 mm cut-off HgCdTe) on HST exhibit a 5-6%\dex flux dependent non-linearity

 exhibits power law behavior, with pixels with high count rates detecting slightly more flux than expected for a linear system (and vice-versa).

Reciprocity failure reported by WFC3 group (1.7 micron) (Bob Hill, DfA

Garching 2009)

Figure 4a-c. The reciprocity failure observed in three different detectors: a) FPA160, b)FPA148, and c) FPA153. In all cases, the flux-dependent response obeys a power law over the range of fluxes tested, although the slope varies from detector to detector.

0.3%/dex to 0.97%/dex ... much smaller than NICMOS effect

So far no indication for reciprocity failure in SNAP 1.7 micron device measured at UM

- The response of H2RG #102 (1.7 mm cut-off HgCdTe) is (-0.23±0.1)%/dex (NIR) and (0.091±0.097)%\dex (Vis) as input flux increases
 - → slight difference between NIR and Vis PD calibrations
 - → but overall smaller than 0.25%\dex

Summary

Much NIR Expertise gained from SNAP program NIR lab at UM capable of precise (% level) characterization

Selection of detector material (2.5 vs 1.7) requires trade studies Lowest read-noise w/ 2.5 micron material but requires much lower temperature than 1.7 micron material

Fast, compact read-out in hand

THANK YOU!